$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

CHEMISTRY
AS/Advanced

SUMMER 2012

CH1
 Section A

1.

2. $1 / 12^{\text {th }}$ mass of one atom of carbon-12.
3. C
4.
(a)

C	O	Cl
$\frac{12.1}{12}$	$\frac{16.2}{16}$	$\frac{71.7}{35.5}$
1.01	1.01	2.02
1	1	2
Formula $=\mathrm{COCl}_{2}$		

(b) $\quad \mathrm{M}_{\mathrm{r}}$ / molecular mass / number of atoms of any element in compound
5. (a) C B D E A
(1 mark if one mistake e.g. A in wrong place)
(b) $\quad \mathbf{Z}$
(1)
Si_{i} is in Group 4 therefore large jump in ionisation energy would be after the fourth ionisation, not before it / \mathbf{W}, \mathbf{X} and \mathbf{Y} have a large jump before the fourth ionisation energy so cannot be in Group 4
(1)

Section B

6.

(a) (i) 12
(ii) 14
(iii) Percentage / abundance / ratio / proportion of each isotope
(b) (i) 0.125 g
(ii) e.g. Cobalt-60 (1) in radiotherapy (1) / Carbon-14 (1) in radio carbon dating (1) / lodine-131 (1) as a tracer in thyroid glands (1)
(c) (i) Atoms are hit by an electron beam / electrons fired from an electron gun (and lose electrons)
(ii) To be able to accelerate the ions (to high speed) / so that they can be deflected by a magnetic field - no credit for 'so that atoms can be deflected...'
(iii) They are deflected by a magnetic field / according to the m / z ratio
(d)
1s
2s
$2 p$
3s
$3 p$

(e) (i) $\mathrm{Mg}_{3} \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow 3 \mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{NH}_{3}$
(ii) moles $\mathrm{Mg}(\mathrm{OH})_{2}=1.75 / 58.32=0.0300$ (1)
moles $\mathrm{Mg}_{3} \mathrm{~N}_{2}=0.0100$ (1)
mass $\mathrm{Mg}_{3} \mathrm{~N}_{2}=0.01 \times 100.9=1.01 \mathrm{~g}(1)$

- must be 3 significant figures to gain third mark

7. (a) Plotting
(2)

Best fit line
(1)
[3]
(b) (i) C
Curve steeper
(1)
(1)

[2]

(ii) Concentration of acid is greatest
(c) $44 \mathrm{~cm}^{3}\left(\pm 1 \mathrm{~cm}^{3}\right)$
(d) Moles $\mathrm{Mg}=0.101 / 24.3=0.00416$

Moles $\mathrm{HCl}=2 \times 0.02=0.04$
(1)
[1]

[2]

(e) (i) Mg is not the limiting factor /

Mg now in excess / HCl not in excess

> [1]
(ii) Moles acid $=0.5 \times 0.04=0.02$

Volume $\mathrm{H}_{2}=0.01 \times 24=0.24 \mathrm{dm}^{3}$

- correct unit needed
(1)
[2]
(f) Lower the temperature of the acid

Reactants collide with less energy
Fewer molecules that have the required activation energy (1)[3]
or Use pieces of magnesium (1) less surface area (1) less chance of successful collisions (1)
QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter.
8.
(a) Oil is non-renewable / will run out

Contribution of CO_{2} to global warming
Oil has other important uses
(Maximum 2 marks)
(b) (i) Power stations / fossil fuels used to generate the electricity needed to make H_{2} (1)

Resulting in CO_{2} formation (global warming) / acid rain (1)
Manufacture of car produces pollution (1)
(Maximum 2 marks)
QWC Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning
(ii) Disagree, no fuel is 100% safe /
petrol can burn explosively
(Accept agree if valid reason given e.g. in terms of lives being lost)
(c) (i) Hydrogen since frequency is inversely proportional to wavelength / smaller wavelength
(ii) Hydrogen since energy is proportional to frequency / greater frequency $/ \mathrm{E}=\mathrm{hf}$
(d) In Ne greater shielding of outer electron (1) outweighs larger nuclear charge (1) / He has greater effective nuclear charge (1) / He outer electron closer to nucleus (1)

- max 1 if no reference to outer electron
(Maximum 2 marks)
(e) (i) ${ }^{218} \mathrm{Po}$
(ii) Since radon is a gas / inhaled, a particles will be given off in the lungs (which may cause cancer)

9.

As temperature is decreased equilibrium moves in exothermic direction.
High pressure
As pressure is increased equilibrium moves towards side with smaller number of gas moles
QWCThe information is organised clearly and coherently, using specialist vocabulary where appropriate
(b) Δ Hreaction $=\Delta H_{f}$ products $-\Delta \mathrm{H}_{\mathrm{f}}$ reactants
$-46=\Delta H_{f}$ ethanol $-(52.3-242)$
ΔH_{f} ethanol $=-46-189.7$
ΔH_{f} ethanol $=-235.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) Bonds broken $=1648+612+926=3186 \mathrm{~kJ} \mathrm{~mol}^{-1}$

$$
\begin{align*}
& \text { Bonds formed }=2060+348+360+463=3231 \mathrm{~kJ} \mathrm{~mol}^{-1} \tag{1}\\
& \Delta \mathrm{H} \text { reaction }=3186-3231=-45 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{align*}
$$

(d) (i) Average bond enthalpies used (not actual ones)
(ii) Yes, since answers are close to each other
(e) Catalyst is in different (physical) state to reactants
(f)

10. (a) Weighing bottle would not have been washed / difficult to dissolve solid in volumetric flask / final volume would not necessarily be $250 \mathrm{~cm}^{3}$
(b) Pipette
(c) To show the end point / when to stop adding acid / when it's neutralised
(d) So that a certain volume of acid can be added quickly before adding drop by drop / to save time before doing accurate titrations / to give a rough idea of the end point
(e) To obtain a more reliable value
(f) (i) \quad Moles $=0.730 / 36.5=0.0200$

Concentration $=0.02 / 0.1=0.200 \mathrm{~mol} \mathrm{dm}^{-3}$
(1) [2]
(ii) Moles $=0.2 \times 0.0238=0.00476$
(iii) 0.00476
(iv) $0.00476 \times 10=0.0476$
(v) $\quad M_{r}=1.14 / 0.0476=23.95$
(vi) Lithium

- mark consequentially throughout (f)

Total [12]

Section B Total [70]

