

GCE MARKING SCHEME

CHEMISTRY AS/Advanced

SUMMER 2012

PMT

CH1 Section A

[1]

2.	1/12 th ma	1/12 th mass of one atom of carbon-12.					
3.	С					[1]	
4.	(a)	C <u>12.1</u> 12 1.01	O <u>16.2</u> 16 1.01	CI <u>71.7</u> 35.5 2.02	(1)		
		1 Formula	1 = COCl ₂	2	(1)	[2]	
	(b) M	. / molecular n	nass / numbe	r of atoms of a	nv element i	n	

(b) M_r / molecular mass / number of atoms of any element in compound [1]

5. (a) **C B D E A** [2]

(1 mark if one mistake e.g. A in wrong place)

(b) **Z** (1)

Si is in Group 4 therefore large jump in ionisation energy would be after the fourth ionisation, not before it / W, X and Y have a large jump before the fourth ionisation energy so cannot be in Group 4 (1)

[2]

Total [10]

Section B

6.	(a)	(i)	12		[1]		
		(ii)	14		[1]		
		(iii)	Percentage / abundance / ra each isotope	atio / proportion of	[1]		
	(b)	(i)	0.125 g		[1]		
		(ii)	e.g. Cobalt-60 (1) in radiothe radio carbon dating (1) / lod thyroid glands (1)				
	(c)	(i)	Atoms are hit by an electron an electron gun (and lose el		rom [1]		
		(ii)	To be able to accelerate the ions (to high speed) / so that they can be deflected by a magnetic field - no credit for 'so that <i>atom</i> s can be deflected' [1]				
		(iii)	They are deflected by a mag m/z ratio	gnetic field / according to	the [1]		
	(d)	1s	2s 2p	3s 3	р		
		↓↑	$\downarrow \uparrow \qquad \downarrow \uparrow \qquad \downarrow \uparrow \qquad \downarrow \uparrow$				
					[1]		
	(e)	(i)	$Mg_3N_2 + 6H_2O \longrightarrow$	3 Mg(OH) ₂ + 2 NH ₃	[1]		
		(ii)	moles Mg(OH) ₂ = 1.75/58.32 = 0.0300 (1)				
			moles $Mg_3N_2 = 0.0100$ (1)				
			mass $Mg_3N_2 = 0.01 \times 100.9 = 1.01 g(1)$ [3]				

- must be 3 significant figures to gain third mark

Total [14]

7.	(a)	Plottir	ng	(2)		
		Best f	fit line	(1)	[3]	
	(b)		С	(1)		
			Curve steeper	(1)	[2]	
		(ii)	Concentration of acid is greatest		[1]	
	(c)	44 cm	n^{3} (±1 cm ³)		[1]	
	(d)	Moles	s Mg = 0.101/24.3 = 0.00416	(1)		
		Moles	s HCl = 2 x 0.02 = 0.04	(1)	[2]	
	(e)	(i)	Mg is not the limiting factor /			
	Mg now in excess / HCl not in e		Mg now in excess / HCl not in excess		[1]	
		(ii)	Moles acid = 0.5 x 0.04 = 0.02	(1)		
			Volume $H_2 = 0.01 \text{ x } 24 = 0.24 \text{ dm}^3$			
			- correct unit needed	(1)	[2]	
	(f)	Lowe	r the temperature of the acid	(1)		
		Reactants collide with less energy (1)				
		Fewer molecules that have the required activation energy (1)[3]				
	or	Use pieces of magnesium (1) less surface area (1) less chance of successful collisions (1)				
			tion of a form and style of writing appropr lexity of subject matter.	iate to purpos	e [1]	

Total [16]

8.	(a)	Oil is	non-renewable / will run out	(1)			
		Contribution of CO_2 to global warming (1)					
		Oil ha	as other important uses	(1)	[2]		
		(Maximum 2 marks)					
	(b)	(i) Power stations / fossil fuels used to generate the electricity needed to make $H_2^{}(1)$					
			Resulting in CO ₂ formation (global warming) / acid rain (1)				
			Manufacture of car produces pollution	(1)	[2]		
			(Maximum 2 marks)				
			QWC Legibility of text; accuracy of spell and grammar, clarity of meaning	ing, punctuat	ion [1]		
		(ii)	Disagree, no fuel is 100% safe /				
		()	petrol can burn explosively (Accept agree if valid reason given e.g. in terms of lives				
			being lost)	n terms of live	[1]		
	(c)	(i)	Hydrogen since frequency is inversely pr wavelength / smaller wavelength	oportional to	[1]		
		(ii)	Hydrogen since energy is proportional to greater frequency / E = hf	frequency /	[1]		
	(d)	In Ne greater shielding of <i>outer</i> electron (1) outweighs larger nuclear charge (1) / He has greater effective nuclear charge (1					
		He <i>outer</i> electron closer to nucleus (1) - max 1 if no reference to <i>outer</i> electron			[2]		
		(Maxi	mum 2 marks)				
	(e)	(i)	²¹⁸ Po		[1]		
		(ii)	Since radon is a gas / inhaled, α particles in the lungs (which may cause cancer)	s will be giver	n off [1]		

Total [12]

(a) Low temperature (1)As temperature is decreased equilibrium moves in exothermic direction. (1)High pressure (1)As pressure is increased equilibrium moves towards side with smaller number of gas moles (1)[4] QWCThe information is organised clearly and coherently, using specialist vocabulary where appropriate [1] Δ Hreaction = Δ H_f products – Δ H_f reactants (1)(b) $-46 = \Delta H_{f}$ ethanol – (52.3 – 242) ΔH_f ethanol = -46 - 189.7 (1) ΔH_{f} ethanol = -235.7 kJ mol⁻¹ (1) [3] Bonds broken = 1648 + 612 + 926 = 3186 kJ mol⁻¹ (c) (1)Bonds formed = $2060 + 348 + 360 + 463 = 3231 \text{ kJ mol}^{-1}(1)$ Δ H reaction = 3186 – 3231 = -45 kJ mol⁻¹ (1)[3] Average bond enthalpies used (not actual ones) (d) (i) [1] (ii) Yes, since answers are close to each other [1] Catalyst is in different (physical) state to reactants [1] (e) (f) (i) exothermic reaction [1] (ii) catalysed reaction [1] Energy

Extent of reaction

9.

Total [16]

10.	(a)	Weighing bottle would not have been washed / difficult to dissolve solid in volumetric flask / final volume would not necessarily be 250 cm ³					
	(b)	Pipet					
	(D)	i ipet					
	(c)		o show the end point / when to stop adding acid / hen it's neutralised				
	(d)	So that a certain volume of acid can be added quickly before					
			g drop by drop / to save time before doing accu ons / to give a rough idea of the end point	rate	[1]		
	(e)	To ob	o obtain a more reliable value				
	(f)	(f) (i) Moles = 0.730/36.5 = 0.0200		(1)			
			Concentration = $0.02/0.1 = 0.200 \text{ mol dm}^{-3}$	(1)	[2]		
		(ii)	Moles = 0.2 x 0.0238 = 0.00476		[1]		
		(iii)	0.00476		[1]		
		(iv)	0.00476 x 10 = 0.0476		[1]		
		(v)	M _r = 1.14/0.0476 = 23.95		[1]		
		(vi)	Lithium		[1]		
			 mark consequentially throughout (f) 				
		Total [

Section B Total [70]